TASMANIAN INSTITUTE OF AGRICULTURAL RESEARCH

28

Bill Cotching

T AND

organic matter

TIAR is a joint venture of the University of Tasmania and the Tasmanian Government

Managing

IT ALL AND ADDRESS

Dynamics of soil Carbon levels

Black Magic model

Management of organic matter

TIAR – research • development • extension • education • training

Effect of cropping rotation on soil carbon

between 1997 and 2010

Effect of long term cropping

Effect of long term cropping tians on soil carbon in Duplex sandy loams

TIAR – research • development • extension • education • training

TI

Rothamsted

TIAR – research • development • extension • education • training

TIAR – research • development • extension • education • training

Rotation

Tasmanian Institute of Agricultural Research

Barley

Relative SOC Contibution by Crop

Rotation

Barley

Oatlands - pasture

Paddock Parameters

Oatlands - pasture

Rotation

	Crop	Irrigated	From	To	Residue Managemen	t Yield (t/ha)
1	Pasture (Grass) 🛛 🔽		Apr 💌	Mar 💌	Grazed 🔽	4
2	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💽	4
3	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💌	4
4	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💽	4
5	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💽	4
6	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💽	4
7	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💌	4
8	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💽	4
9	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💽	4
10	Pasture (Grass)		Apr 💌	Mar 💌	Grazed 💌	4
D ()	Settings	Crops		Grap	h	Print
Rotation Summary						
	Length of Rotation	, 10	Yrs		Initial OC Level	1.10 %
	Number of Crops	10			Final OC Level	2.00 %
	Simulation Period	100	Yrs			

Oatlands - pasture

Carbon Dioxide Flux

This change in soil organic carbon over the simulation period equates to locking up 640 kg of carbon dioxide per hectare per year

Settings

Organic Carbon over 100 Years

Tasmanian Institute of Agricultural Research

Ferrosol cropping

Paddock Parameters

Ferrosol cropping

Rotation

Ferrosol cropping

Carbon Dioxide Flux

This change in soil organic carbon over the simulation period equates to liberating 1,480 kg of carbon dioxide per hectare per year

Ferrosol cropping + green manure

Rotation

Ferrosol cropping + green manure

Carbon Dioxide Flux

This change in soil organic carbon over the simulation period equates to liberating 40 kg of carbon dioxide per hectare per year

Ferrosol cropping + green manure

Relative SOC Contibution by Crop

So what's good

and what's not so good

for soil organic matter

TIAR - research • development • extension • education • training

Points to remember

- Research has NOT been able to demonstrate practices that increase soil C in any cropping system (no-till slows rate of decline).
- Avoid bare fallows as these contribute the most to organic matter decline.
- Maximising inputs of organic matter by incorporating crop residues and including green manures and pastures in the rotation, where practical, should be a goal for all farmers.